Subsurface Scattering
Using Point Clouds

Mario Marengo

What Is It?

+ SSSis a GLOBAL effect

« Can be split into two separate components: Single and Multiple scattering.

« Single scattering is the directional component, and Multiple scattering the diffuse component.
* The split is arbitrary and has to do with implementation, not light behaviour.

Multiple Scattering

Using Pixar’s approach from
the Siggraph 2003 Renderman notes:
“*Human Skin For Finding Nemo”.

Light Path: Arrival

A portion of the incident light is reflected, and the remaining amount transmitted.
« Fresnel functions calculate these factors.

Local illumination models deal with the reflected portion and ignore transmission/absorption. SSS
takes them it into account.

Reflected

/Refraction (Fresnel)

Transmitted

Light Path: Scatter

+ Transmitted light bounces (scatters) inside the medium.
+ Parts of it may exit the object at locations very distant from the point of incidence.
« Asittravels it gradually looses energy until it becomes completely extinguished.

Extinction

« Physically correct model uses exponential curve.
+ The Pixar model uses RSL’s smoothstep() function, which is the same as VEX’s smooth().

« Smooth() allows us to force intensity to reach zero at some user-defined distance D.
We ignore the boundary!

falloff = €
falloff = 0

N\ ox

falloff = 1 —smooth(0,D,|x|)

smooth(x) = 3x° - 2x° {0<x>1}

Extinction Viewed From The Shader

« Given a surface position P and a user-defined scattering distance D.

* We must sample the amount of light arriving within a distance D from P and apply our extinction
curve to each sample.

 No way to sample a large neighbourhood around P inside a shader.

« Solution: Point Clouds! -- let the neighbouring points be the points in a point cloud.

Sampling Strategy

1. Start with a shading position P...

Sampling Strategy

1. Start with a shading position P and a user-provided “Scattering Distance” D.

Sampling Strategy

We know that only points within a radius D of P can possibly contribute to SSS.

Sampling Strategy

2. Calculate a normalizing factor for this radius: norm =3 n D* / 10.

-c r/D

For an exponential function of the form e this factor would be

2D°¢°n(ef—6—1)/c?

norm =3t D 2/ 10

Sampling Strategy

3. Distribute sample points X; within a radius D of shade point P.

Sampling Strategy

For each sample point X::

Sampling Strategy

1. Calculate representative surface area A..

Sampling Strategy

2. Calculate distance from P as r; = distance(P, X;).

Sampling Strategy

3. Calculate irradiance I,= Cl * dot(N, L;).

]’. = (] *dﬂt(&, Il\q‘)

* We need the surface normal N; at X;
* We need to be able to sample illumination at X;

Sampling Strategy

4. Calculate final contribution K; from X; as
K.=1.* (I-smooth(0, D, r;)) * A; | norm

5. Add K; to accumulator.

L=Cl+dot(N, L,)

* We need the surface normal N; at X;
* We need to be able to sample illumination at X;

Point Cloud Strategy

 There’s no reason why we can’t apply the sampling strategy to point cloud points
alone.
* For every shade point:
1. Find N neighboring pc points, where N is a parameter given by the user.
2. Calculate SSS for each pc point in this group:
» Store result in pc attribute

» Result for current shade point is some weighted average of all the N neighboring PC
points.

 The stored SSS values for PC points used during this calculation won’t need to be re-
computed for nearby shade points.

A “Better” Parameterization (?)

* Instead of using a number /N of points closest to P to filter over...
 We could use a filtering radius for the reconstruction.
» So we ask the user for a “Filtering Radius” instead of “Number of Points to Filter”.

» This avoids the problem of having to constantly update the number of points that will
give us a “smooth” reconstruction as the cloud density changes.

« Additionally, we could internally initialize this value to some fraction of the “Scattering
Distance” D, and just present the user with a “Filter Size” scaling factor instead.

Attribute Shopping List

* Our PC points will need the following attributes:
o Surface normal: N (Facet SOP)
o Representative Surface Area: ptarea (Scatter SOP)

* Due to the way in which ptarea is calculated, we will need to “normalize” it
against the total surface area.

0 Measure each prim’s area (Measure SOP).

o Accumulate into detail attribute via the Attribute Promote SOP — Tarea.
o Use the same process to calc total ptarea — Tptarea.

o Final ptarea then becomes:

ptarea = ptarea * Tarea / Tptarea

What About Color?

* Two Choices:
1. Sample unmodified irradiance and “tint” it by a surface color after the fact.

2. Sample each “wavelength” (RGB) using different scattering distances for each
one:

o Simply use the surface color as three separate weights for the scattering
distance D.

o E.g: If surface color is
Cs={1,0.50},
and scattering distance is given as
D=2,
then we will sample SSS three times (once per channel), using the
scattering distances:
D=2,D=1,and D=0. (2*1, 2*0.5, and 2*0)
o The normalizing factor norm should always be based on the largest value of
D.

Code: The Main Entry Point

// Computes outgoing radiance due to multiple scattering at the given
// surface position, by filtering neighbouring point cloud positions.

vector Bshulti (
string 1mask; Light mask
string pcmap ; Pointcloud map

int nfp; Number of points to filter

vector Rd; diffuse reflectance (Rd)
float sd; scattering distance (1d)

float bounce ; Bounce aAttenuation bias
int t_rgb; Whether to calc rgb separately

vector Pin; Surface position [typically: P]
vector HMin; Surface normal [typically: H]

)

vector Xo = wo_space{Pin};

vector Ho = normalize{wo_nspace{Hin)};
vector mapP, mapHN, ssm;

int KHX;

string ch_ssm = "ssH”;

ffint handle = pcopen{pcmap, “P", Xo, 1e37, nfp);
int handle = pcopen{pcmap, P, Xo, "N, Ho, 1e37, nfp);

while {pcunshaded{handle, ch_ssm}) {
pcimport{handle, "P", mapP};
pcimport{handle, "H", mapH};

ssm = ssIntegMulti { lmask,pcmap, Rd, sd, bounce,t_rgb, mapP, mapH };

®¥®X = pcexport(handle, ch_ssm, Ssm);
H

vector bssrdf = wvector({pcfilter({handle, ch_ssm}};
pcclose{handle};
return bssrdf;

Code: The Sampling Function

// Integrates the multiple
// point-cloud point.

vector ssIntegMulti (
string 1mask; Light mask
string pcmap; Pointcloud map

vector Rdo; diffuse reflectance
float sd; // scattering distance

float bounce; /7 Bounce Atten
int t_rgb; // Whether to calc RGB separately

vector pcP; // PointCloud position (object space)
vector pcH; /f PointCloud normal {object space)
)

vector %i,Hi /4 For the incomming side: P,N

vector Xo = pcP; /f outgoing pos
vector Ho normalize(pcH}; /# outgoing normal

vector 1d = Rdo*sd;
float 1d1 max{ld);

/7 Open up the point cloud map
int handle = pcopen{pcmap, P, Ko, ld1, {int)}1e?);

//# calc direct illumination
pclllum{handle, illum”,lmask};

Continued...

Code: The Sampling Function (continued...)

// calc multiple scattering term

float vr,ptarea;

vector ssm=08, ptillum=8;

while {(pciterate{handle)}) {
pcimport{handle, P, Xi); incoming pos
pcimport{handle, "N, HNi}; incoming normal
pcimport{handle, "point.distance™, r}; distance to Xi
pcimport{handle, "ptarea™, ptarea); TODD: ensure ptarea exists
pcimport{handle, "illum™, ptillum); irradiance at Xi

Ni = normalize{Hi);

/7 Avoid (attenuate) light bouncing through air

vector Li = (Xo-%i)/1ld1; /4 "incidence®™ wvector
float Kb = ssBounceAtten({Mo,Mi,Li); 7/ bounce atten

kb = lerp{1.8,kb,bounce);

if{kb>0_.90) {
if{t_rgb)
{
int wave;
For{wave=0;wave{3 ;wave++) {
setcomp{ ssm,
getcomp{ssm,wave) +
kb = getcomp{ptillum,wave) = ptarea x
(1-smooth({B,getcomp{1ld,wave},r)),
wave
¥s
H
e
else
ssm += kb * ptillum = ptarea * {1-smooth{0,1d1,r)};

H

pcclose{handle};
if(*t_rgb) ssm*=Rdo;

float norm = 3.08=1d1*=1d1=A_H_PI / 18.8;
return ssm / norn;

Code: The Irradiance Function

void pcIllum (int handle; string att, 1mask) {
vector p, n;
vector illum;
int status;

while {pcunshaded{handle, att})}) {
pcimport{handle, P, p); p = ow_space{p);

pcimport{handle, "N, n); n = normalize{ow nspace{n));

illum = 8;

illuminance{p, n, A_M PI 2, A LIGHT DIFFSPEC, "lightmask™,1lmask) {
shadow{C1};
illum += Cl1 * diffuseBRDF{normalize{lL), n);

H

status = pcexport{handle, att, illum);

Next: Single Scattering...

	Subsurface Scattering�Using Point Clouds
	What Is It?
	Multiple Scattering
	Light Path: Arrival
	Light Path: Scatter
	Extinction
	Extinction Viewed From The Shader
	Sampling Strategy
	Sampling Strategy
	Sampling Strategy
	Sampling Strategy
	Sampling Strategy
	Sampling Strategy
	Sampling Strategy
	Sampling Strategy
	Sampling Strategy
	Sampling Strategy
	Point Cloud Strategy
	A “Better” Parameterization (?)
	Attribute Shopping List
	What About Color?
	Code: The Main Entry Point
	Code: The Sampling Function
	Code: The Sampling Function (continued…)
	Code: The Irradiance Function
	Next: Single Scattering…

