Jump to content

Leaderboard


Popular Content

Showing most liked content since 10/07/2018 in all areas

  1. 19 points
    I thought it fitting to post this here too ;). For better or worse, I'm launching a vfx and animation studio at the end of the week. Some of you may recognize some of the name (if you squint and look at it just right). http://theodstudios.com
  2. 15 points
    Hi everyone, Herer's a little personal project I did over the last year. No keyframes where used for the animation. Each movement is generated through physical simulation or procedural noise. The Bananas and Pears are done in H16.5 using CHOPs controlled Bones and then fed into a FEM simulation. All the other fruits are done using H17 and Vellum. ÖBST: "How would fruits move if they could?" Hope you like it.
  3. 14 points
    There are so many nice example files on this website that I am often searching for. I wanted to use this page as a link page to other posts that I find useful, hopefully you will too. Displaced UV Mapped Tubes Particles Break Fracture Glue Bonds Render Colorized Smoke With OpenGL Rop Moon DEM Data Creates Model Python Script Make A Belly Bounce Helicopter Dust Effect Conform Design To Surface Benjamin Button Intro Sequence UV Style Mapping UV Box and Multiple Projection Styles Ping Pong Frame Expression Instance vs. Copy (Instance Is Faster) Particle Bug Swarm Over Vertical and Horizontal Geometry Rolling Cube Rounded Plexus Style Effect Pyro Smoke UpRes Smoke Trails From Debris Align Object Along Path Fading Trail From Moving Point Swiss Cheese VDB To Polygons Get Rid Of Mushroom Shape In Pyro Sim A Tornado Ball Of Yarn Particles Erode Surface Unroll Paper Burrow Under Brick Road Non Overlapping Copies Build Wall Brick-By-Brick FLIP Fluid Thin Sheets Smoke Colored Like Image Volumetric Spotlight Moving Geometry Using VEX Matt's Galaxy Diego's Vortex Cloud Loopable Flag In Wind Eetu's Lab <--Must See! Wolverine's Claws (Fracture By Impact) Houdini To Clarisse OBJ Exporter Skrinkwrap One Mesh Over Another Differential Growth Over Surface [PYTHON]Post Process OBJ Re-Write Upon Export Rolling Clouds Ramen Noodles Basic Fracture Extrude Match Primitive Number To Point Number Grains Activate In Chunks Fracture Wooden Planks Merge Two Geometry Via Modulus Fill Font With Fluid DNA Over Model Surface VDB Morph From One Shape To Another Bend Font Along Curve Ripple Obstacle Across 3D Surface Arnold Style Light Blocker Sphere Dripping Water (cool) Exploded View Via Name Attribute VEX Get Obj Matrix Parts eetu's inflate cloth Ice Grows Over Fire Flying Bird As Particles DEM Image To Modeled Terrain Pyro Temperature Ignition Extrude Like Blender's Bevel Profile Particles Flock To And Around Obstacles BVH Carnegie Mellon Mocap Tweaker (python script) Rolling FLIP Cube Crowd Agents Follow Paths Keep Particles On Deforming Surface Particle Beam Effect Bendy Mograph Text Font Flay Technique Curly Abstract Geometry Melt Based Upon Temperature Large Ship FLIP Wake (geo driven velocity pumps) Create Holes In Geo At Point Locations Cloth Blown Apart By Wind Cloth Based Paper Confetti Denim Stitching For Fonts Model A Raspberry Crumple Piece Of Paper Instanced Forest Floor Scene FLIP pushes FEM Object Animated Crack Colorize Maya nParticles inside an Alembic Path Grows Inside Shape Steam Train Smoke From Chimney Using Buoyancy Field On RBDs In FLIP Fluid Fracture Along A Path COP Based Comet Trail eetu's Raidal FLIP Pump Drip Down Sides A Simple Tornado Point Cloud Dual Colored Smoke Grenades Particles Generate Pyro Fuel Stick RBDs To Transforming Object Convert Noise To Lines Cloth Weighs Down Wire (with snap back) Create Up Vector For Twisting Curve (i.e. loop-d-loop) VDB Gowth Effect Space Colonization Zombie L-System Vine Growth Over Trunk FLIP Fluid Erosion Of GEO Surface Vein Growth And Space Colonization Force Only Affects Particle Inside Masked Area Water Ball External Velocity Field Changes POP particle direction Bullet-Help Small Pieces Come To A Stop Lightning Around Object Effect Lightning Lies Upon Surface Of Object Fracture Reveals Object Inside Nike Triangle Shoe Effect Smoke Upres Example Julien's 2011 Volcano Rolling Pyroclastic FLIP Fluid Shape Morph (with overshoot) Object Moves Through Snow Or Mud Scene As Python Code Ramp Scale Over Time Tiggered By Effector Lattice Deforms Volume Continuous Geometric Trail Gas Enforce Boundary Mantra 2D And 3D Velocity Pass Monte Carlo Scatter Fill A Shape Crowd Seek Goal Then Stop A Bunch Of Worms Potential Field Lines Around Postive and Negative Charges Earthquake Wall Fracture Instance Animated Geometry (multiple techniques) Flip Fluid Attracted To Geometry Shape Wrap Geo Like Wrap3 Polywire or Curve Taper Number Of Points From Second Input (VEX) Bullet Custom Deformable Metal Constraint Torn Paper Edge Deflate Cube Rotate, Orient and Alignment Examples 3D Lines From 2D Image (designy) Make Curves In VEX Avalanche Smoke Effect Instant Meshes (Auto-Retopo) Duplicate Objects With VEX Polywire Lightning VEX Rotate Instances Along Curved Geometry Dual Wind RBD Leaf Blowing Automatic UV Cubic Projection (works on most shapes) RBD Scatter Over Deforming Person Mesh FLIP Through Outer Barrier To Inner Collider (collision weights) [REDSHIFT] Ground Cover Instancing Setup [REDSHIFT] Volumetric Image Based Spotlight [REDSHIFT] VEX/VOP Noise Attribute Planet [REDSHIFT] Blood Cell Blood Vessel Blood Stream [REDSHIFT] Light Volume By Material Emission Only [REDSHIFT] Python Script Images As Planes (works for Mantra Too!) [REDSHIFT] MTL To Redshift Material [REDSHIFT] Access CHOPs In Volume Material [REDSHIFT] Mesh Light Inherits Color [REDSHIFT] Color Smoke [REDSHIFT] FBX Import Helper [REDSHIFT] Terrain Instancer Height Field By Feature Dragon Smashes Complex Fractured House (wood, bricks, plaster) Controlling Animated Instances Road Through Height Field Based Terrain Tire Tread Creator For Wheels Make A Cloth Card/Sheet Follow A NULL Eye Veins Material Matt Explains Orientation Along A Curve Mesh Based Maelstrom Vortex Spiral Emit Multiple FEM Objects Over Time Pushing FEM With Pyro Spiral Motion For Wrangle Emit Dynamic Strands Pop Grains Slope, Peak and Flat Groups For Terrains Install Carnegie Mellon University BVH Mocap Into MocapBiped1 Ramp Based Taper Line Fast Velocity Smoke Emitter Flip Fill Cup Ice Cubes Float [PYTHON]Export Houdini Particles To Blender .bphys Cache Format Collision Deform Without Solver or Simulation Mograph Lines Around Geometry Waffle Cornetto Ice Cream Cone Ice Cream Cone Top Unroll Road Or Carpet Burning Fuse Ignites Fuel or Painted Fuel Ignition Painted Fuel Combustion Small Dent Impact Deformation Particle Impact Erosion or Denting Of A Surface Helicopter Landing Smoke And Particles Radial Fracture Pieces Explode Outwards Along Normal Tangent Based Rocket Launch Rolling Smoke Field Tear/Rip FLIP (H12 still works in H16) Rain Flows Over Surface Rains Water Drip Surface Splash Smoke Solver Tips & Tricks Folding Smoke Sim VEX Generated Curve For Curling Hair Copy and Align One Shape Or Object To The Primitives Of Another Object (cool setup) A Better Pop Follow Curve Setup FEM Sea Cucumber Moves Through Barrier Fracture Cloth Smoke Confinement Setup Merge multiple .OBJ directly Into A Python Node Blood In Water Smoke Dissipates When Near Collision Object Whirlpool Mesh Surface Whirlpool Velocity Motion For FLIP Simple Bacteria Single Point Falling Dust Stream Flames Flow Outside Windows Gas Blend Density Example Localized Pyro Drag (smoke comes to a stop) Granular Sheet Ripping Post Process An Export (Post Write ROP Event) Corridor Ice Spread or Growth Set Velocity On Pieces When Glue Bonds Break Water Drops Along Surface Condensation Bottle Grains Snow or Wet Sand Starter Scene A Nice Little Dissolver Turn An Image Into Smoke Fading Ripples Grid Example Stranger Things Wall Effect Face Through Rubber Wall [PYTHON]Create Nurbs Hull Shelf Tool [PYTHON] Ramp Parameter Select Outside Points Of Mesh, Honor Interior Holes Sparks Along Fuse With Smoke Umbrella Rig Melt FLIP UVs Tire Burn Out Smoke Sim Flip or Pyro Voxel Estimate Expression Motorcycle or Dirt Bike Kicks Up Sand Particles Push Points Out Of A Volume [PYTHON]Cellular Automata Cave Generator Punch Dent Impact Ripple Wrinkle VEX Rotate Packed Primitive Via Intrinsic Kohuei Nakama's Effect FLIP Fluid Inside Moving Container Particles Avoid Metaball Forces FLIP Divergence Setup FLIP Transfer Color Through Simulation To Surface Morph Between Two Static Shapes As Pyro Emits Constraint Based Car Suspension Pyro Smoke Gas Disturbs Velocity Wire Solver Random Size Self Colliding Cables Fast Cheap Simple Collision Deform CHOP Based Wobble For Animated Character Slow Motion FLIP Whaitewater Avoid Stepping In Fast Pyro Emission FLIP Fluid Fills Object Epic Share Of Softbody/Grain Setups (Must see!) Balloon, Pizza, Sail, Upres Shirt, Paint Brush Create Pop Grain Geometry On-The-Fly In A DOPs Solver Varying Length Trails VEX Based Geometry Transform Determine Volume Minimum and Maximum Values Grain Upres Example Animated pintoanimation For Cloth Sims Batch Render Folder Of OBJ files Vellum Weaving Cloth Fibers Knitting Kaleidoscopic Geometry UV Image Map To Points Or Hair Color Particles Like Trapcode Particular Flat Tank Boat Track With Whitewater Orthographic Angle Font Shadow Select Every Other Primitive or Face? Printer Spits Out Roll Of Paper Unroll Paper, Map, Plans, Scroll Simple Vellum L-System Plant Basic Cancer Cell 2D Vellum Solution Vellum Animated Zero Out Stiffness To Emulate Collapse Whitewater On Pre Deformed Wave [PYTHON] Menu Callback Change Node Color Extruded Voronoi With Scale Effector Use Google To Discover Attached HIP Files Useful Websites: Tokeru Houdini Houdini Vex Houdini Python FX Thinking iHoudini Qiita Ryoji Video Tutorials: Peter Quint Rohan Dalvi Ben Watts Design Yancy Lindquist Contained Liquids Moving Fem Thing Dent By Rigid Bodies Animating Font Profiles Guillaume Fradin's Mocap Crowd Series(no longer available) Swirly Trails Over Surface http://forums.odforce.net/topic/24861-atoms-video-tutorials/ http://forums.odforce.net/topic/17105-short-and-sweet-op-centric-lessons/page-5#entry127846 Entagma SideFX Go Procedural
  4. 12 points
    A lot of people asked me to share this fake fire method.If you interested it, you can will check this simple hip. After rander i used ACES for a better look. fake_fire_rnd.hip
  5. 11 points
    nature.hipnc just to say hello and share some stuffs. /cnc_verkstad/ Tesan Srdjan
  6. 11 points
    Hi, Just posting some of my recent art. Most of it is houdini. Some is a mix of Houdini, Daz and Marvelous Designer. If you see a character, that's definitely from Daz. Everything is rendered in Octane. regards Rohan
  7. 10 points
    I can't take credit for it, but it needed to be shared. This made me cry with laughter.
  8. 9 points
    what if the self buttons were creating DOP setups inside one SOP network instead of having a Geometry node, a DOP network for simulation and another Geometry node to import the data and save to disk. It makes much more sense to see the data flow from top to bottom in one network without having to jump to different levels for no reason. maybe it's just me... grains.hipnc
  9. 8 points
    Hi everyone! The past week I worked on a personal project for learn something about hairs - vellum. It's my first project ever with hairs so I guess is nothing special but several people asked to see the hip file so here it is. Final result: Hip file (I had to recreate it but it should be pretty much the same): groom_clumping_03.hipnc https://andreasbabo93.wixsite.com/sbabovfx/example-files (new version, there was an error on the other one)
  10. 7 points
    I also moved all the tumblr example files I've been sharing onto my new website that you can find here. https://www.richlord.com/tools
  11. 7 points
    Article on SideFX.com: https://www.sidefx.com/community/houdini-175-launch-event/
  12. 7 points
    I've wanted to tackle mushroom caps in pyro sims for a while. Might as well start here... Three things that contribute greatly to the mushroom caps: coarse sub-steps, temperature field and divergence field. All of these together will comb your velocity field pretty much straight out and up. Turning on the velocity visualization trails will show this very clearly. If you see vel combed straight out, you are guaranteed to get mushrooms in that area. If you are visualizing the velocity, best to adjust the visualization range by going forward a couple frames and adjusting the max value until you barely see red. That's your approximate max velocity value. Off the shelf pyro explosion on a hollow fuel source sphere at frame 6 will be about 16 Houdini units per second and the max velocity coincides with the leading edge of the divergence filed (if you turn it on for display, you'll see that). So Divergence is driving the expansion, which in turn pushes the velocity field and forms a pressure front ahead of the explosion because of the Project Non-Divergent step that assumes the gas is incompressible across the timestep, that is where where divergence is 0. I'm going to get the resize field thingy out of the way first as that is minor to the issue but necessary to understand. Resizing Fields Yes, if you have a huge explosion with massive velocities driven by a rapidly expanding divergence field, you could have velocities of 40 Houdini units per second or higher! Turning off the Gas Resize will force the entire container to evaluate which is slow but may be necessary in some rare cases, but I don't buy that. What you can do is, while watching your vel and divergence fields in the viewport, adjust the Padding parameter in the Bounds field high enough to keep ahead of the velocity front as that is where you hope for some nice disturbance, turbulence and confinement to stir around the leading edge of the explosion. or... Use several fields to help drive the resizing of the containers. Repeat: Use multiple fields to control the resizing of your sim containers. Yep, even though it says "Reference Field" and the docs say "Fluid field..", you can list as many fields in this parameter field that you want to help in the resizing. In case you didn't know. Diving in to the Resize Container DOP, there is a SOP Solver that contains the resizing logic that constructs a temporary field called "ResizeField", importing the fields (by expanded string name from the simulation object which is why vector fields work) with a ForEach SOP, each field in turn, then does a volume bound with the Volume Bounds SOP on all the fields together using the Field Cutoff parameter. Yes there is a bit of an overhead in evaluating these fields for resizing, but it is minor compared to having no resizing at all, at least for the first few frames where all the action and sub-stepping needs to happen. Default is density and why not, it's good for slower moving sims. Try using density and vel: "density vel". You need both as density will ensure that the container will at least bound your sources when they are added. Then vel will very quickly take over the resizing logic as it expands far more rapidly than any other field in the sim. Then use the Field Cutoff parameter to control the extent of the container. The default here is 0.005. This works for density as this field is really a glorified mask: either 0 or 1 and not often above 1. Once you bring the velocity field in to the mix, you need to adjust the Field Cutoff. Now that you have vel defined along side density, this Field Cutoff reads as 0.005 Houdini units per second wrt the vel field. Adjust Field Cutoff to suit. Start out at 0.01 and then go up or down. Larger values give you smaller, tighter containers. Lower values give you larger padding around the action. All depends on your sim, scale and velocities present. Just beware that if you start juicing the ambient shredding velocity with no Control Field (defaults to temperature with it's own threshold parameter so leave there) to values above the Field Cutoff threshold, your container will zip to full size and if you have Max Bounds off, you will promptly fill up your memory and after a few minutes of swapping death, Houdini will run out of memory and terminate. Just one of the things to keep in mind if you use vel as a resizing field. Not that I've personally done that... The Resolution Scale is useful to save on memory for very large simulations, which means you will be adjusting this for large simulations. The Gas Resize Field DOP creates a temporary field called ResizeBounds and the resolution scale sets this containers resolution compared to the reference fields. Remember from above that this parameter is driving the Volume Bound SOP's Bounding Value. Coarser values leads to blurred edges but that is usually a good thing here. Hope that clears things up with the container resizing thing. Try other fields for sims if they make sense but remember there is an overhead to process. For Pyro explosions, density and vel work ok. For combustion sims like fire, try density and temperature where buoyancy contributes a lot to the motion.
  13. 6 points
    Hello everyone! My name is Daniele, I'm new to Odforce. This is my first post, nice to meet you! I've been a character animator for a few years but recently I started learning Houdini. I'm learning using resources I find online, including some super useful posts from this forum. I would love to use this post to keep track of my progress and share my results with you. My first project is a procedural building, hip is attached. Cheers! Daniele procedural_house_01.hipnc
  14. 6 points
    More Unlimited Fun nature2 fun.hipnc
  15. 6 points
    Hi. How about computing local space per primitive instead, and then get noise position from point position in the local space? Some sort of edge based UV unwrap. // Primitive wrangle. int pts[] = primpoints(0, @primnum); // Compute averaged primitive normal from point normals computed from their neighbours. vector normals[]; foreach (int pt; pts) { vector normalized_edges[]; vector pt_pos = point(0, "P", pt); foreach (int nb; neighbours(0, pt)) { vector nb_pos = point(0, "P", nb); append(normalized_edges, normalize(pt_pos - nb_pos)); } append(normals, normalize(avg(normalized_edges))); } vector normal = normalize(avg(normals)); // Compute edge tangent. vector pt0 = point(0, "P", pts[0]); vector pt1 = point(0, "P", pts[1]); vector edge = normalize(pt0 - pt1); // Compute bitangent and orthonormalize matrix. vector perp = normalize(cross(normal, edge)); normal = normalize(cross(edge, perp)); 3@tangent_space = set(perp, normal, edge); Final deformation code: // Point wrangle. int prim; xyzdist(1, @P, prim, set(0)); matrix3 tangent_space = prim(1, "tangent_space", prim); vector pos = @P * invert(tangent_space); float deform = noise(pos * {10,1,100}) * 0.05; v@P += v@N * deform; Some image sampling could work too: tangent_space_noise.hipnc
  16. 6 points
    With the help of both the Redshift community and resources here, I finally figured out the proper workflow for dealing with Redshift proxies in Houdini. Quick summary: Out of the box, Mantra does a fantastic job automagically dealing with instanced packed primitives, carrying all the wonderful Houdini efficiencies right into the render. If you use the same workflow with Redshift, though, RS unpacks all of the primitives, consumes all your VRAM, blows out of core, devours your CPU RAM, and causes a star in nearby galaxy to supernova, annihilating several inhabited planets in the process. Okay, maybe not that last one, but you can't prove me wrong so it stays. The trick is to use RS proxies instead of Houdini instances that are in turn driven by the Houdini instances. A lot of this was based on Michael Buckley's post. I wanted to share an annotated file with some additional tweaks to make it easier for others to get up to speed quickly with RS proxies. Trust me; it's absolutely worth it. The speed compared to Mantra is just crazy. A few notes: Keep the workflow procedural by flagging Compute Number of Points in the Points Generate SOP instead of hard-coding a number Use paths that reference the Houdini $HIP and/or $JOB variables. For some reason the RS proxy calls fail if absolute paths are used Do not use the SOP Instance node in Houdini; instead use the instancefile attribute in a wrangle. This was confusing as it doesn’t match the typical Houdini workflow for instancing. There are a lot of posts on RS proxies that mention you always need to set the proxy geo at the world origin before caching them. That was not the case here, but I left the bypassed transform nodes in the network in case your mileage varies The newest version of Redshift for Houdini has a Instance SOP Level Packed Primitives flag on the OBJ node under the Instancing tab. This is designed to basically automatically do the same thing that Mantra does. It works for some scenarios but not all; it didn't work for this simple wall fracturing example. You might want to take that option for a spin before trying this workflow. If anyone just needs the Attribute Wrangle VEX code to copy, here it is: v@pivot = primintrinsic(1, “pivot”, @ptnum); 3@transform = primintrinsic(1, “transform”, @ptnum); s@name = point(1, “name_orig”, @ptnum); v@pos = point(1, “P”, @ptnum); v@v = point(1, “v”, @ptnum); Hope someone finds this useful. -- mC Proxy_Example_Final.hiplc
  17. 6 points
    Hello all. I wanted to share my production library of tools I have posted on Github. Previously a lot of these were posted on Orbolt.com after my 2016 GDC talks. The tools were originally designed to be used in a HOUDINI_PATH style library as opposed to individual hdas. In this manner they can include a larger array of script based tools that don't fall in the paradigm of Orbolt. This toolset is generally complementary to the GameDev, Mops, etc toolset, there are only a few overlaps nowadays. There are two primary libraries of tools. https://github.com/LaidlawFX/LaidlawFX - This is the production library built up over the last decade of work that has been cleansed of studio specific work. This currently contains a set HDA's, a common python library, shelf tools, and example files on how to used the .hdas. Some fun tools in here are an Ivy Generator inspired by Thomas Luft Ivy generator http://graphics.uni-konstanz.de/~luft/ivy_generator/ . File Cache nodes that have been tested on over a dozen productions. RBD to FBX extractors, and an array of ROP tools. Also a module of python code that includes a few sub-modules such as verbosity logging, multiple hda queuing, fbx exporting, file explorer opening, and the large set of options for file caching. Additionally it contains shelf scripts so that you no longer need to use the Material Library, you can just tab and use the shaders like normal nodes. https://github.com/LaidlawFX/HoudiniEngineDev - This is over one hundred hda's to test Houdini Engine implementations in different DCC's and game engine. Each of them test a simple principle from UI parameters to different geometry types and more. Hope they help you at some point. Feel free to branch or leave comments here and I can update the source. Thanks, -Ben
  18. 6 points
    For anyone that is interested: here is a tutorial on the best method I found to get nice motion. I figured I would post this since I still get messaged about this thread. https://youtu.be/DLSmz9HOKlE
  19. 6 points
    This operator allows you to call a collection of nodes on any data or simply no data (generators). It gives you full control over how the lambda function should be run.
  20. 6 points
    Hey all, here's a shot I've been working on! Speed Tree, Houdini and Redshift. Have a good one
  21. 6 points
    it's pretty straightforward out of the box just use v@N, v@up or p@orient on your instancing points in such a way that resulting reference frame has Y pointing in up-down direction of your ocean (so in normal direction of the ball) and X in the direction you want wind to blow in in your file, since v@N is pointing outwards and v@N defines Z axis, your ocean deforms in a tangential direction and therefore you are seeing weird deformation here is the modified file ts_ocean_on_ball.hip
  22. 6 points
    Hi roberttt! I did that specific fracture before the Houdini 16+ booleans were available, using a custom voronoi cutters technique. Basically, I used boolean-style cutter geometry to guide a voronoi fracture. 1) Scattered lots of points on the cutter geo, point-jitter them for width, and create cluster attributes on those points to create small clumps 2) Create a band of voronoi points a bit further from the cutter geometry, to define the large chunks. These points all get the same cluster value, and make sure that cluster value isn't used in the small-chunks clusters. 3) Run the fracture with clustering.... although the new H17 voronoi fracture doesn't seem to have clustering built in. So I believe you need to do the clustering post-fracture in H17, which unfortunately doesn't have an option to remove the unnecessary internal faces, so the geom can be a bit heavy with the new workflow. (Unless I'm missing something obvious!) I don't think I've used this voronoi fracture workflow at all since the H16+ booleans were released, and I've removed that technique from my CGMA destruction class. Nowadays I would handle this in one of these ways: - Running a primary boolean fracture to define the main chunks, and then running a secondary pass where I generate additional fragments on the edges of the main pieces. There are various ways to generate those secondary boolean edge cuts, and it's always a bit experimental. - Fracture everything at once into lots of small pieces, and use noise or geometry-grouping to define the larger shapes from the smaller fracture. Then once those large chunks are defined, use constraints or the name attribute or double-packing to get them to behave as individual large pieces. Hope this helps! :-)
  23. 6 points
    I pared the scene right back and rebuilt it using stuff I learned at the start of the year, its behaving as expected now I think. constrain_to_animated_anchors_matts_soft_rotation.hipnc
  24. 6 points
    anyone interested in the h17 pyro custom velocity.. normal_tools.hiplc
  25. 6 points
    Hey All! The first part of this tutorial has been available for almost a year now, but because of the sad news that hit CMI, I was unable to upload the 2nd "half" there. So instead I just made it available on Youtube for everyone, to make up for that I suppose. I'm considering putting the first part on there as well, if enough people want that. In this tutorial covers the following, using Houdini * Generating water meshes * Updating the terrain based on the water * Generate walking paths on the terrain * Create some basic instances * Build a flexible system using external files to place these instances. Built on Houdini 16.5, but should work on 16 too, or all the way back to H14 if you skip the heightfield part. Recommended specs: at least 16GB of RAM, reduce the terrain size if you have less. Disclaimer: Work files are as is, and do not contain the cached geometry to save on space, this may explain node errors on the various "File Cache" nodes. It does however also contain the work done in the first half of the tutorial, albeit mostly undocumented: https://tinyurl.com/y89egjvq Hopefully its of some use! Twan
  26. 5 points
  27. 5 points
    Few tips and tricks to manipulate gas simulation. 1. Independent resolution grid. E.g. Overriding vel grid size independent to a density grid. 2. Creating additional utilities. E.g. gradient, speed, vorticity and etc which can be used to manipulate forces. 3. Forces via VEX and some example snippets. smokesolver_v1.hipnc P.S. Some of this technique are not Open CL friendly though.
  28. 5 points
    Tried to get mud surface effect with some reaction to the geometry without heavy simulations. iskalvlup_heightfields_mud_worms.hip
  29. 5 points
    Hi all, I've made a Color Sampler asset that samples colors from an image. Colors can be sampled with points on a line, on a grid, randomly scattered points or with input points. It's also possible to sample the most frequently occurring colors. The sampled colors are stored in a color ramp which can be randomized. You can download it from https://techie.se/?p=gallery&type=houdini_assets&item_nr=6.
  30. 5 points
    Here's a music video I made using a bunch of the techniques from this thread.
  31. 5 points
    Hi, maybe this approach might work: int count = npoints(1); for (int i = 0; i < count; i++) { vector camP = point(1, "P", i); vector dir = normalize(camP - @P); float bias = 0.01; vector hit_ps[]; int hits = intersect_all(0, @P, dir * 100, hit_ps, {}, {}); if (hits && distance(@P, hit_ps[-1]) > bias) // or just check number of intersections: // if ( length(hits) >1 ) { @Cd *= 0.6; } } cull.hiplc
  32. 5 points
    This is not really on topic given the other stuff on this thread, but I made some growth awhile back, and finally got around to animating it. Attached the hip. Its not very robust, but I got what I needed out of it, so I'm calling it good. 19_03_26_animated_growth.hiplc
  33. 5 points
    Finally after two years of full stagnation I found the energy to fully revamp it using HUGO (which is freaking cool) and update with the very latest projects. Unfortunately 2 projects I have been working I am not allowed to share (yet)… one of them was 8 months of my life so I am pretty gutted but hopefully soon will be ok to say we did it. https://jordibares.com [jordibares.com] Most of it now is Houdini of course… :-)
  34. 5 points
    Hey guys I interviewed Manuel Tausch (FX TD/co founder of Stormborn Studios) for FX World. The interview went live today. Here's the link! http://fxworld.tv/interview-with-manuel-tausch-pt-1/
  35. 5 points
    Here are two simple clipping tools using python SOP verbs: Bricker and Radial. Unlike the divide SOP it´s cutting always right through the center. python_cutting.hip
  36. 5 points
    here you go. scene file in attachment. pattern_example.hiplc
  37. 5 points
    If possible, it might be easier to sim the whole thing first, then carve it away later. I didn't change much from the default sim parameters but it gets what I mean across. My nodes are in red. You could do some neat stuff w/find shortest path sop, too. RnD_Embroidering_v202_odforce_jr.hip
  38. 5 points
    I'll just repeat my H15.5, H16, H16.5, H17 number one wish then: Finally get the built in VEX editor up to snuff. Make it a real code editor. Pretty Please :-) The most important improvement for me would be showing the parameters of a function right there in the editor, but many other things from editors like Code, Komodo Edit etc. would also make Houdini much better to code in. Thanks and Cheers, Tom
  39. 5 points
    Basic: // Primitive wrangle. int pts[] = primpoints(0, @primnum); vector rest = point(0, "P", pts[0]); vector prev_pos = rest; matrix3 frame = ident(); for (int i = 0; i < len(pts); i++) { vector pos = point(0, "P", pts[i]); rotate(frame, 0.1, {0, 0, 1}); vector new_pos = (pos - rest) * frame + prev_pos; rest = pos; prev_pos = new_pos; setpointattrib(0, "P", pts[i], new_pos); } Advanced: // Primitive wrangle. #define TWO_PI 6.2831852 addpointattrib(0, "N", {0, 0, 0}); int pts[] = primpoints(0, @primnum); int npt = len(pts); // Loop variables. vector rest = point(0, "P", pts[0]); vector prev_pos = rest; matrix3 frame = ident(); for (int i = 0; i < npt; i++) { vector pos = point(0, "P", pts[i]); vector delta = pos - rest; rest = pos; // Make normal. Point normals could be used instead. vector normal = normalize(cross(cross({0, 1, 0}, delta), delta)); if (length(normal) == 0) { normal = {0, 0, 1}; } // Drive a shape with ramps and multipliers. vector axis; float ramp, angle; // Twist the bend axis. axis = normalize(delta); ramp = chramp("twist_profile", (float) i / npt); angle = fit01(ramp, -TWO_PI, TWO_PI) * ch("twist") / (npt - 1); rotate(frame, angle, axis); // Bend the curve. axis = normalize(cross(normal, delta)); ramp = chramp("bend_profile", (float) i / npt); angle = fit01(ramp, -TWO_PI, TWO_PI) * ch("bend") / (npt - 1); rotate(frame, angle, axis); // Compute new position and normal. vector new_pos = delta * frame + prev_pos; prev_pos = new_pos; setpointattrib(0, "P", pts[i], new_pos); setpointattrib(0, "N", pts[i], normal * frame); } curl.hipnc
  40. 4 points
    Because the three values defines an imaginary line going from 0,0,0 to the position in space described by the 3 values. That point can be far away or i can be close to 0,0,0. This way the 3 values are able to define both a direction and a length. -b
  41. 4 points
    again, not for groups, but if you create primitive string attribute on your geo you can use stylesheets to override cryptomatte property 1. create primitive string attribute that holds your "id" value or unique name (or just convert your groups to name attrib) (in this case I created unique s@name attrib per box) 2. create property on your object (in this case I called it: masks) 3. create stylesheets override for Primitives with Override Script that uses name attribute binding to override your cryptomatte property example file: ts_cryptomatte_from_attribute.hip
  42. 4 points
    - VEX Wranggle autocomplete and dynamic help display, like python shell. Please, its time..
  43. 4 points
  44. 4 points
    Here is a concept for turning blueprints into simple 3d meshes. Its basically carving silhouettes into a volume. After getting the aspect ratio for defining the volume´s dimensions ... res_front = hou.imageResolution(img_front) res_side = hou.imageResolution(img_side) res_top = hou.imageResolution(img_top) ratio_side = res_side[1] / float(res_side[0]) ratio_top = res_top[1] / float(res_top[0]) geo.addAttrib(hou.attribType.Global, 'ratio_s', ratio_side, create_local_variable=False) geo.addAttrib(hou.attribType.Global, 'ratio_t', ratio_top, create_local_variable=False) ... a wrangle is carving the silhouettes into the volume from all three sides: vector bbox = relbbox(0, v@P); float mask_front = vector(colormap(image_front, bbox.x, bbox.y)).x; float mask_side = vector(colormap(image_side, bbox.z, bbox.y)).x; float mask_top = vector(colormap(image_top, bbox.x, bbox.z)).x; f@density = min(mask_front, mask_side, mask_top); The rest is a matter of converting to polygons, smoothing and remeshing. blueprint_to_geo.hiplc blueprints.zip
  45. 4 points
    I've gone this route...if someone asks you to bend a 1x1x1 segment box.......well you can't cos there ain't enough segments for it to bend. So I decide if the pearls are sooooo low res, they would less likely to deform. So in my new file, if you sim it now (don't go down to peak and subdiv yet) the pearl sphere have Freq at 2, you'll see deformations as they smash into each other. Substep for the sim is at 2 which is a minimal increase. Now go up to the sphere and change Freq to 1, sim again....to the naked eye...that's good enough for me as a rigid object. Then now you'll see the cheating purpose of the peak and subdiv, they are simply there to get back the volume of the pearls that were lost due to extreme low res setting. I'd take this approach with the cost as a minimal substep increase. Of course, I don't know how extreme your situation is....is there a mock up test file ? vu_hankypearls2.hiplc
  46. 4 points
    It's possible, but quite cumbersome because of how HDAs still use a xml to define these things. Also, it won't work with nodes that only have the category hardcoded (usually older nodes). It should work with the newer gamedev tools import xml.etree.ElementTree as ET def create_all_nodes_by_category(network, category): installed_hdas = hou.hda.loadedFiles() for hda in installed_hdas: definitions = hou.hda.definitionsInFile(hda) for definition in definitions: try: xml_content = definition.sections()["Tools.shelf"].contents() root = ET.fromstring(xml_content) tool = root.find("tool") submenu = tool.find("toolSubmenu").text if submenu == category: network.createNode(definition.nodeTypeName()) except: pass create_all_nodes_by_category(hou.node("/obj/geo1"), "GameDev") https://streamable.com/4yxqx
  47. 4 points
    To get reflection symmetry in VEX try setting v@P to abs(v@P). Feeding that into an animated noise function will bring you some caleidoscope-like effects. vector pos = abs(v@P) + set(@Time * 0.2, @Time, @Time * 0.4); v@P += v@N * anoise(pos); Otherwise yes, clip and mirror. calei.hiplc
  48. 4 points
    - rather than doing it in detail wrangle use point wrangle as you want trail per point - also you can create prims directly in wrangle too so no need for id - addpoint() can take reference ptnum which it will clone with all the attribs so no need to import the attribs manually - and to your question, no, it's not possible to access attributes from new points as the creation will happen at the end as a separate single threaded process, all you are doing with geometry creation functions addpoint() setpointattrib(), ... is queuing those for later here is a simple pointwrangle volume trail code: float step = chf("step"); int niter = chi("niter"); if (niter <= 0) return; int prim = addprim(0, "polyline"); vector P = @P; vector v = 0; for (int i=0; i<=niter; i++){ int pt = i == 0 ? @ptnum : addpoint(0, @ptnum); addvertex(0, prim, pt); P += normalize(v)*step; v = volumesamplev(1, "vel", P); setpointattrib(0, "P", pt, P); setpointattrib(0, "v", pt, v); } volume_trails_VEX_fix.hip
  49. 4 points
    ok, here is the example file with 4 ways (cache the instance geometry first, both blue nodes ) 1. (Purple) rendering points with instancefile attrib directly through fast instancing 2. (Green) overriding unexpandedfilename intrinsic for any packeddisk primitive copied onto points without stamping 3. (Red) just for comparison Instance SOP, which is using copy stamping inside, so it will be slower than previous methods 4. (Yellow) copying static alembic without stamping and overriding abcframe in this case to vary time for each instance independently (if you need various alembics you can vary abcfilename as well) ts_instance_and_packed_examples_without_stamping.hip
  50. 4 points
    Project Non-Divergent Step and Mushrooms The Project Non-Divergent DOP is responsible for 99.9% of the simulation's behaviour. Yes hundreds of DOPs inside the Pyro Solver all playing a part but all funnelling through that single Non-Divergent step. This means that if you don't like the look of your sim and the mushrooms, it's ultimately because of the Non-Divergent step creating a vel field that doesn't do it for you. If you want to see for yourself, unlock the Pyro Solver, dive in, find the Smoke Solver, unlock that, dive in and find the projectmultigrid DOP and bypass it, then play. Nothing. For most all Pyro sims, this is the Project Non-Divergent Multigrid as it is the fastest of the Non-Divergent micro-solvers. This specific implementation only takes the vel and divergence field and assuming across the timestep that the gas is non-compressible when divergence is 0, will create a counter field called Pressure and then apply that pressure field to the incoming vel to remove any compression or expansion and that gives you your velocity, nice turbulent and swirly, or combed straight out. Just tab-add a Project Non-Divergent Multigrid DOP in any dop network and look at the fields: Velocity Field, Goal Divergence Field and Pressure Field (generated every timestep, used, then removed later on). All the other fields in Pyro are there to affect vel and divergence. Period. Nothing else. At this point I don't care about rendering and the additional fields you can use there. It's about vel and divergence used to advect those fields in to interesting shapes, or mushrooms. If you want to create your own Pyro Solver taking in say previous and new vel, density, temperature, and then in a single Gas Field VOP network, create an interesting vel and divergence field, then pass that straight on to the Project Non-Divergent Multigrid microsolver, then advect density, temperature and divergence afterward, go for it. Knowing that only vel and divergence drive the simulation is very important. All the other fields are there to alter the vel and divergence field. So if you have vel vectors that are combed straight, divergence (combustion model in Pyro) or buoyancy (Gas Buoyancy DOP on temperature driving vel) have a lot to do with it. Or a fast moving object affecting vel...
×