1. ## old school

Members

4

• ### Content count

1,063

2. ## flcc

Members

1

• ### Content count

310

3. ## Dweeble

Members

1

• ### Content count

9

4. Members

1

90

## Popular Content

Showing most liked content on 03/11/2020 in all areas

1. 1 point
Is there a way to art direct the "voronoifracturepoints"? How can I control where it places the groups of points?
2. 1 point
Two more renders :
3. 1 point
It's working and it's easy. What do you dislike, using uvs or using noises ? or another reason ? Volume_Pattern_01 F.hip
4. 1 point
I sometimes have extremely slow nodes and deleting the contents of 'houdini_temp' in User/<Username>/AppData/Local/temp has always resolved it.
5. 1 point
More fun 13.lesson. projectione.h /*! \fn vector2 one_sphere(vector2 z; float r) \brief Project \f$z \in C\f$ to \f$S^1\f$. Project \f$z \in C\f$ to \f$S^1\f$ with radius \f$r\f$. \param z the direction in \f$C\f$ to project to \f$S^1\f$ \param r the radius of \f$S^1\f$ \return the point \f$z \frac{r}{\mid z \mid}\f$ */ vector2 one_sphere(vector2 z; float r) { return z / length(z) * r; } /*! \fn vector two_sphere(vector z; float r) \brief Project \f$z \in R^3\f$ to \f$S^2\f$. Project \f$z \in R^3\f$ to \f$S^2\f$ with radius \f$r\f$. \param z the direction in \f$R^3\f$ to project to \f$S^2\f$ \param r the radius of \f$S^2\f$ \return the point \f$z \frac{r}{\mid z \mid}\f$ */ vector two_sphere(vector z; float r) { return z / length(z) * r; } /*! \fn vector2 stereo2(vector c) \brief Stereographic projection from \f$S^2\f$. Stereographic projection from \f$S^2\f$ into \f$C\f$. \param c the vector in \f$S^2\f$ to project into \f$C\f$, , must not be \f$(0, 0, 1)\top\f$ \return the stereographic projection to \f$C\f$ */ vector2 stereo2(vector c) { float x = c.x; float y = c.y; float z = c.z; return set(x, y) / (1-z); } /*! \fn vector stereo3(vector4 c) \brief Stereographic projection from \f$S^3\f$. Stereographic projection from \f$S^3\f$ into \f$R^3\f$. \param c the vector in \f$S^3\f$ to project into \f$R^3\f$, must not be \f$(0, 0, 0, 1)\top\f$ \return the stereographic projection to \f$R^3\f$ */ vector stereo3(vector4 c) { float x = c.x; float y = c.y; float z = c.z; float w = c.w; return set(x, y, z) / (1-w); } /*! \fn vector4 stereo3_inv(vector c) \brief Inverse of the stereographic projection from \f$S^3\f$. Inverse from \f$R^3\f$ into \f$S^3\f$ of the stereographic projection. \param c the vector in \f$R^3\f$ to reproject into \f$S^3\f$. \return the projection into \f$S^3\f$ */ vector4 stereo3_inv(vector c) { float x = c.x; float y = c.y; float z = c.z; return set(2*x, 2*y, 2*z, length2(c)-1) / (length2(c)+1); } vector stereo3_e4(vector4 c) { return set(c.x, c.y, c.z) / (1.-c.w); } vector stereo3_e4_inv(vector c) { return set(2*c.x, 2*c.y, 2*c.z, length2(c)-1) / (length2(c)+1.); } /*! \fn vector sphere_inversion(vector z; vector center; float scale) \brief Sphere inversion Perform a Möbius tranformation to project every point inside the the unit sphere in \f$R^3\f$ to outside and vice versa. \param z the original vector in \f$R^3\f$ \param center the center of the sphere \param scale the radius of the sphere \return the inverted vector */ vector sphere_inversion(vector z; vector center; float scale) { // Compute translation, then transform in the origin and retranslate vector translation = set(center.x, center.y, center.z); vector transformed = z - translation; return transformed / length2(transformed) * pow(scale, 2) + translation; } complex.h *! \fn vector2 cmul(vector2 z; vector2 w) \brief Multiply two complex numbers Multiply two arbitrary complex numbers. \param z first factor \param w second factor \return \f$z \cdot w\f$ */ vector2 cmul(vector2 z; vector2 w) { float x = z.x; float y = z.y; float u = w.u; float v = w.v; float real = x*u - y*v; float imaginary = x*v + y*u; return set(real, imaginary); } /*! \fn vector2 cdiv(vector2 w; vector2 z) \brief Divide one complex number by another complex number Divide one arbitrary complex number by another non-zero complex number. \param w divident \param z divison \return \f$\frac{w}{z}\f$ */ vector2 cdiv(vector2 w; vector2 z) { float x = z.x; float y = z.y; float u = w.u; float v = w.v; float divisor = pow(x, 2) + pow(y, 2); float real = (u*x + v*y) / divisor; float imaginary = (v*x - u*y) / divisor; return set(real, imaginary); } /*! \fn vector2 cpow(vector2 z; int n) \brief Compute the \f$n\f$-th power of a complex number Compute the \f$n\f$-th power of a complex number, for \f$n \in N\f$. \param z the complex number \param n the exponent \return \f$z^n\f$ */ vector2 cpow(vector2 z; int n) { float x = z.x; float y = z.y; float r = length(z); float phi = atan2(y, x); return pow(r, n) * set(cos(n*phi), sin(n*phi)); } /*! \fn float real(vector2 z) \brief Give the real part of a complex number Give the real part of a complex number represented by the first component of a two element vector. \param z the complex number \return the real part \f$a\f$ of \f$z = a + ib\f$ */ float real(vector2 z) { return z.x; } /*! \fn float img(vector2 z) \brief Give the imaginary part of a complex number Give the imaginary part of a complex number represented by the second component of a two element vector. \param z the complex number \return the imaginary part \f$b\f$ of \f$z = a + ib\f$ */ float img(vector2 z) { return z.y; } /*! \fn vector2 e_to_the_is(float s) \brief Give a point on the one-sphere. Give a point on the one-sphere parameterized by \f$s\f$ in the parametric form. \param s the real parameter \return the point \f$(\cos s, \sin s) \subset C\f$ */ vector2 e_to_the_is(float s) { return set(cos(s), sin(s)); } vector4 f; p@f; float n = chi("n"); float k = chi("k"); int j = @ptnum; float cosine = cos(($PI*j) / (2.*n)); float sine = sin(($PI*j) / (2.*n)); vector2 cosine_exp = cosine * e_to_the_is($PI -$PI/(k+1)); vector2 exp_neg = e_to_the_is(- $PI/4); vector2 exp_pos = e_to_the_is($PI/4); vector2 sine_exp_neg = sine * exp_neg; vector2 sine_exp_pos = sine * exp_pos; float j_mod_4n = j % (4*n); if( j_mod_4n < n ) { f.x = cosine; f.y = 0; f.z = real(sine_exp_neg); f.w = img(sine_exp_neg); } else { if( j_mod_4n < 2 * n ) { f.x = real(cosine_exp); f.y = img(cosine_exp); f.z = real(sine_exp_neg); f.w = img(sine_exp_neg); } else { if( j_mod_4n < 3 * n ) { f.x = real(cosine_exp); f.y = img(cosine_exp); f.z = real(sine_exp_pos); f.w = img(sine_exp_pos); } else { if( j_mod_4n < 4 * n ) { f.x = real(cosine); f.y = 0; f.z = real(sine_exp_pos); f.w = img(sine_exp_pos); } else { f.x = cosine; f.y = 0; f.z = real(sine_exp_pos); f.w = img(sine_exp_pos); } } } } p@f = f;
6. 1 point
Thanks for the additional information. I can see the exterior band voxel bounding box change, when alter the value. I never really played around with that. Getting closer, though.
7. 1 point
lookAtVop.hip
8. 1 point ## Lock particles position to source points on a deforming mesh in new ve

sticking behavior is supported in new POPs, you just need to provide pospath, posprim, posuv and stuck attributes which is quite straightforward using scatter and attribcreate ts_pop_stick_release.hip
9. 1 point ## get rid of mushroom effect in explosion and add details in the opening

10. 1 point ## get rid of mushroom effect in explosion and add details in the opening

11. 1 point ## get rid of mushroom effect in explosion and add details in the opening

12. 1 point 