Jump to content

VEX Penrose tile

Recommended Posts


Here is simple version based on Python implementation.

// Primitive wrangle.
// http://preshing.com/20110831/penrose-tiling-explained/

int pts[] = primpoints(0, @primnum);
vector a = point(0, "P", pts[0]);
vector b = point(0, "P", pts[1]);
vector c = point(0, "P", pts[2]);

float g = (1 + sqrt(5)) / 2;
vector p = a + (b - a) / g;
vector q = b + (a - b) / g;
vector r = b + (c - b) / g;

#define RED true
#define BLUE false
#define SAME @group_reversed
#define REVERSED !@group_reversed

void triangle(vector a, b, c; int red_or_blue, same_or_reversed)
    int prim = addprim(0, "poly");
    addvertex(0, prim, addpoint(0, a));
    addvertex(0, prim, addpoint(0, b));
    addvertex(0, prim, addpoint(0, c));
    setprimgroup(0, "red", prim, red_or_blue);
    setprimgroup(0, "reversed", prim, same_or_reversed);

if (@group_red)
    triangle(c, p, b, RED, SAME);
    triangle(p, c, a, BLUE, SAME);
    triangle(r, q, a, RED, REVERSED);
    triangle(q, r, b, BLUE, REVERSED);
    triangle(r, c, a, BLUE, SAME);

// Lengths of virtual edges to group for dissolve later.
setdetailattrib(0, "virtual_edge_long", distance(a, c));
setdetailattrib(0, "virtual_edge_short", distance(p, b));

removeprim(0, @primnum, true);


Edited by f1480187
  • Like 4

Share this post

Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now